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Introduction
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® Document classification, a task of using algorithms to automatically classify the input document to one or
multiple categories. Nevertheless, almost all graph-based methods are de-signed to construct static word co-
occurrence graph for the whole document without considering sentence-level information.

three potential
challenges

Dynamic
Word ambiguity Word synonymity contextual
dependency

® We construct a trainable individual graph consisting of sentence-level subgraphs for each document.
® We propose a sparse structure learning model via GNNs to learn an effective and efficient structure with
dynamic syntactic and semantic information for each document.
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Figure 1: Overview of the proposed model. (a) Model framework. (b) GNN: Local and Global Joint Message Passing. (c) SSL:
Sparse Structure Learning contains (c.1) Dynamic Contextual Dependency Score, (c.2) Adaptive Sampling for Sparse Structure,
and (c.3) Reconstructing Sparse Graph.
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L MW Npw) Ny [ \ .
““““““““ %P ¢ f %z Definition 1. Sentence-level Subgraph Given a sentence
8y o) Guo-~ i W s; € 8§, a sentence-level subgraph G, = (V;,&;) can rep-
I = r\v,‘ ! T resent the sentence s; as a word co-occurrence graph. The
— o P node set V; contains words in sentence s;. The edge set &;
— _ contains all connections between any pair of words in V;
__________ Definition 2. Local Syntactic Neighbor Given a node
(" NN clobal semantic: ) v € V in a preliminary document graph G, we define a lo-
| N, (v) : cal syntactic neighbor u € N;(v) that is adjacent to node
: : v within sentence-level subgraphs Gs.
: W mm |
| mrm Ws : Definition 3. Global Semantic Neighbor Given a node
| . . . —
| y : v € V in a preliminary document graph G, we define a
% Sm | global semantic neighbor z € N, (v) that can have dynamic
: 3 e I relation with node v between sentence-level subgraphs .
2 1. !
| |
: Local syntactic |

A document-level graph G = (V,{& UE,,})
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D) W) _Ma@) ) AN . .
TN gL® = Local and Global Joint Message Passing
Sy s 4 3 \ S — Lprea . . . .
> 51 D e : k-th iteration of message passing process in a GNN
i [ e G k k) (3 (k—1 k—1
}( @/Glob;\lr:i;n)antlc i:{ 4 G;j~Gumbel(0,1) 0 . h — qb (f( ( ) {h( ) U E N })) (1)
v ! f S Prrra JAI obtain the entire graph'’s representation
w5 hg = R{LE v € G}). 2)
1, - The message passing part can be reformulated as:
L N )\ vocosore 2. Adaptive Sampling . 3. Sparse Graph Construction (©)_/
WP = ¢ (h;—wwg*? + tOWE 4R Wk ) (5)
“|GNN) _ . .
: Global semantic N\ hif) € RY is the node representation vector and b is the
N, (v) number of hidden dimension. The local syntactic neighbor

representations t{%) ¢ R and global semantic neighbor rep-

f |
' |
| |
|
|
J| Ws mrm | resentations m'” € R? can be expressed as:
I
| s W- ; (SRE .
: W, arm Y, mrm : weN: (v)uiv} C‘EC’L
| : R
> : mP= 3, =R
| A : 2€Nm (1) * =1 A (2 Gy
| Local syntactic | o

\(b) N@w) Co = D ien ﬁvj with self-looped adjacency matrix A = A + I.
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Sparse Structure Learning

Dynamic Contextual Dependency Score Given a node
v € V in a complete graph G*, all neighbors of node v are in

N*(v), where we can obtain N* (v) = N*(v) — N (v)F—1)

G;j~Gumbel(0,1)

Ll

Non(v)

AN
:‘\

N )
o ! S
S |
S |
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Ly
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o |
S |
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a |
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i W: mm softmax

| s R that contains all global semantic candidate neighbors of
B G vy node v. We first calculate attention coefficient score between
(@, each neighbor j € N'*(v) and node v as follows:

\(b) N(v)

E W ! T ; ]
a}y =9 (a® RPW®|EFHwWE]) @)

where W) ¢ RP*P denotes the projection for node fea-
tures h,, € R'*? and h; € R™*®. k denotes the current layer

|

i

. of our model. We adopt function 1 as LeakyReLU(-) activa-
' tion function, and a € R"*! is a learnable vector.
|

I

|

I

|

I

I

I

softmax o

j € Nn(v) %)
o(F) exp(a, ;) ©)
v.J *I:-I{,':I 2
ZuEN* (v) E}Cp(l’lmu )

3. Sparse Graph Construction (C),’
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Method

Sparse Structure Learning
Gumbel-Softmax Distribution

Formally, let a discrete variable 7 has a distribution of prob-
abilities (¢1, ..., ¢n) with class C = {cy, ..., cp }. Gumbel-

G;j~Gumbel(0,1)
Non ()

y
% O H e Lo max (Gumbel 1954) provides an efficient way for the cate-
I v’ ﬁ gorical distribution to sample x, with:
<o r, = argmax(log ¢; + G;) (3)
U W Gumbel-Softmax to approximate it as follows:

1 ; G;
______________________________________________ 5 — _ exp((log(¢s) + Gi)/T) @)

" >rexp((log(¢;) + Gy)/7)

Sampling Adaptive Neighbors for Sparse Structure

|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|

feNi) {m - Uf;, wg = 1 = s(k)-} and adopt Gumbel-Softmax
approach to generate differentiable probability p( ) of selec-
et tor samples p( ) as follows:
\___LDCDScore 2 Adoptive Sampling 3. Sparse Graph Construction (€) / (k) _ _ exp((logm +¢1)/7) (10)

v > icio.1y exp((logm; + g;)/7)’
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Reconstructing Sparse Graph

document graph. Specifically, we update the global seman-

tic neighbors ANV, (v)*) for node v with selected candidate
neighbors as follows:

Non(0)® = N ()* D U (G [1V5 = o7 =1} (D)

where ;7 € N (v). In addition, for static local syntactic
neighbors N;(v), we compute the entropy to preserve con-
sistency of the original syntactic information and prevent too

G;j~Gumbel(0,1)

Ll

softmax

—————————————————————————————————————————————— ~ much structure variation in the graph

( 1

| : LB =% S —pFog (), (12)
} : VEV jEN:(v)

| softmax | :

E | Lpfad — I(R(h’u):y)u (13)
| j € N (@) i

| v — e, (D) |

| |

| |

v j
4 1. DCDScore 3. Sparse Graph Construction (€) /



i ATAI
Chongqing Advanced Technique

University of of Artificial

Dataset |#D0cs #Training #Test #Classes (p) #Vocab. Avg#lLength Avg#Sentence #Prop.NW

MR 10,662 7,108 3,554 2(1.0) 18,764 20.39 1.17 30.09%
R8 7,674 5,485 2,189 3 (84.7) 7,688 65.72 4.03 2.60%
R52 9,100 6,532 2,568 52 (1666.7) 8,892 69.82 4.34 2.63%
Ohsumed | 7,400 3,357 4,034 23(62.5) 14,157 135.82 8.59 8.46%
20NG 18,846 11,314 7932 20 (1.6) 42757 221.26 6.06 7.40%

Table 1: Statistics of the datasets. p denotes class imbalance ratio (the sample size of the most frequent class divided by that of
the least frequent class). The Avg.#Length and the Avg.#Sentence mean the number of words and the number of sentences in a
document, respectively. The #Prop.NW denotes the proportion of new words in test.
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Categories Baselines MR RS R52 Ohsumed 20NG
Word-baied fastText T72.17+1.30 86.04+024 71.55+042 14.5940.00 11.38+1.18
SWEN 76.65+0.63 95.32+026 92944024 63.124+0.55 R85.164+0.29
CNN-non-static  77.754+0.72 95.714+0.52 87.594+048 58.4441.06 R2.154+0.52
Sentence-based LSTM (pretrain) 77.334£0.89 96.09+0.19 90.48+0.86 51.10£1.50 7543+1.72
Bi-LSTM T7.68+0.86 96.31+0.33 90.54+0.91 49274+1.07 73.18+1.85
TextGCN 76.74+0.20 97.07+0.10 93.56+0.18 68.364+0.56 86.34+0.09

Giraph-based (To) Huang et al. - Q7.80+0.20 94.60+0.30 69.40+0.60 -

P TensorGCN 77.914+0.07 98.04+0.08 9505+0.11 70.114+0.24 87.74-+0.05
DHTG 77.21+0.11 97.334+0.06 93934+0.10 68.80+0.33 R&7.134+0.07

TextING 78.93+0.65 97341025 93.734+0.47 67.954+0.52 OOM
Graph-based (Ind) HyperGAT T7.364+0.22 96.82+0.21 94.154+0.18 66.39+0.65 84.6540.31
Our pmposal 79.74+0.19 97.81+0.14 95.48+0.26 70.59+0.38 85.26+0.28
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Table 2: Test accuracies of various models on five benchmark datasets. The mean =+ standard deviation of all models are reported
an average of 10 executions of each model. Graph-based (Tr) means transductive graph-based methods and Graph-based (Ind)
means inductive graph-based methods.
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Graph | RS R52 Ohsumed
WordCooc | 97.20+£0.29 93.82+0.15 68.08+0.32
Disjoint 07.2940.21 94.8304+0.20 69.724+0.27
Complete 97.404+0.25 94.35+0.10 67.57+0.30
Ours 97.76+0.16 953240.21 70.534+0.30
Ours w/reg | 97.81+0.14 95.48+0.26 70.59+0.38
Table 3: Comparison with different constructions of

document-level graphs. (1) WordCooc denotes word co-
occurrence graph. (2) Disjoint means a disjoint union of
sentence-level subgraphs. (3) Complete graph means dis-
joint graph with fully connected edges between sentences.
(4) Ours graph is constructed by sentence-level subgraphs
and learned by sparse structure learning(w/ reg means we
add regularization to our model).
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T RS R52 Ohsumed
0.01 | 97.50+0.29 95.164+0.18 70.59-+0.38
0.1 | 97.344+0.13 95.48+0.26 70.214+0.40
0.2 | 97.441+0.39 95.03+0.16 70.33+0.32
0.5 | 97.81+0.14 94.56+0.33 70.344+0.37
1.0 | 97.35+£0.24 95.09+0.32 70.2240.29

Table 4: Test accuracy with different temperatures 7 for

adaptive sampling.
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Figure 2: Micro F1 score and Macro F1 score with different
percent of training data from 0.025 to 1 on R52 dataset.
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